Altitude Compensating Nozzles (ACN)

Completed Technology Project (2011 - 2016)

Project Introduction

An Altitude Compensating Nozzle (ACN) enables the nozzle flow to adjust with the ambient pressure as it decreases with altitude so that the plume is never significantly over or under-expanded. The performance of ACNs can be near optimal over most of the flight. Hence, mission integrated performance with an ACN could be higher than with a Conventional Bell (CB) nozzle. The purpose is to advance the TRL of ACNs through static ground tests, and ultimately by demonstrating this technology through flight test. The primary near-term objective is to advance Dual Bell (DB) nozzle technology, and ultimately the team has plans to advance the TRL of other ACN conceptual designs (e.g. aerospike, clustered aerospike, etc.).

Anticipated Benefits

A study at MSFC shows that a 1st stage aerospike nozzle produces: Up to a 3% gain in 1st stage average Isp and Thrust. Up to a 10% payload benefit in Delta IV Medium to LEO.

Primary U.S. Work Locations and Key Partners

Dual-bell nozzle during testing at the NASA MSFC Nozzle Test Facility (NTF)

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3

Center Innovation Fund: AFRC CIF

Altitude Compensating Nozzles (ACN)

Organizations Performing Work	Role	Туре	Location
Armstrong Flight Research Center(AFRC)	Lead	NASA	Edwards,
	Organization	Center	California
Marshall Space Flight Center(MSFC)	Supporting	NASA	Huntsville,
	Organization	Center	Alabama

Primary U.S. Work Locations	
Alabama	California

Images

Project ImageDual-bell nozzle during testing at the NASA MSFC Nozzle Test Facility (NTF)
(https://techport.nasa.gov/imag e/35803)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Armstrong Flight Research Center (AFRC)

Responsible Program:

Center Innovation Fund: AFRC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

David F Voracek

Project Manager:

David F Voracek

Principal Investigator:

Daniel S Jones

Center Innovation Fund: AFRC CIF

Altitude Compensating Nozzles (ACN)

Technology Areas

Primary:

- TX01 Propulsion Systems

 TX01.2 Electric Space
 Propulsion
 - └ TX01.2.4 Electrothermal

